Опыт показывает, что не только в этом примере, но и во всех случаях ускорение тела пропорционально действующей на него силе. Отсюда следует, что для нахождения ускорений, сообщаемых данному телу разными силами, достаточно только один раз измерить и силу, действующую на тело, и вызываемое ею ускорение; если затем на то же тело подействовать другой силой, то возникающее ускорение изменится во столько же раз, во сколько раз изменилась сила.
Конечно, такие опыты с тележкой слишком грубы для точного установления закона пропорциональности между силами и ускорениями. Однако при помощи более точных методов измерений, в частности по данным астрономических наблюдений, было установлено, что прямая пропорциональность между действующей на данное тело силой и сообщаемым ею этому телу ускорением весьма точно оправдывается на опыте.
§ 43. Масса тела. Итак, для данного тела ускорение, сообщаемое ему какой-либо силой, пропорционально этой силе. Сравним теперь ускорения, сообщаемые силами разным телам. Мы увидим, что возникающее ускорение определяется не только силой, но и тем, на какое тело эта сила действует. Будем, например, тянуть разные тела при помощи динамометра, следя за тем, чтобы во всех случаях показание динамометра было одним и тем же, т. е. чтобы на тела действовала одна и та же сила. Для этого можно, например, видоизменить описанный в предыдущем параграфе опыт, выбирая различные тележки или устанавливая на тележки различные тела и подбирая каждый раз такой груз на конце
94
нити, перекинутой через блок, чтобы показание динамометра было одним и тем же во всех опытах.
Измеряя возникающие в подобных опытах ускорения, мы убедимся в том, что, вообще говоря, разные тела получают при воздействии одной и той же силы различные ускорения: разные тела в различной мере обладают свойством инерции. Можно ввести понятие о мере инерции тел, считая меру инерции двух тел одинаковой, если под действием равных сил они получают одинаковые ускорения, и считая меру инерции тем большей, чем меньшее ускорение получает тело под действием данной силы.
Что же определяет меру инерции различных тел? От каких свойств тел зависит ускорение, сообщаемое данной силой? Или, наоборот, какими свойствами тела определяется сила, необходимая для сообщения данного ускорения? Опыт показывает, что для тел, изготовленных из одного и того же вещества, например из алюминия, ускорение, вызываемое данной силой, тем меньше, чем больше объем тела, причем ускорение оказывается обратно пропорциональным объему тела. Но если производить опыты с телами, изготовленным» из различных материалов (например, из железа, алюминия, дерева), то никакой связи с объемом тел не обнаружится: тела равных объемов будут получать под действием одной и той же силы разные ускорения, а для получения одинаковых ускорений придется подобрать объем железного тела меньший, чем алюминиевого, а алюминиевого— меньший, чем деревянного. Каково должно быть соотношение объемов тел, изготовленных из разных материалов, чтобы под действием равных сил они получали одинаковые ускорения, заранее узнать нельзя. Необходимо определить непосредственным опытом, какой объем должно иметь алюминиевое или деревянное тело для того, чтобы оно получало под действием заданной силы то же ускорение, что и данное железное тело. Если тела получают под действием одной и той же силы равные ускорения, мы должны считать' одинаковой меру инерции этих тел.
Таким образом, мера инерции тела должна быть определена непосредственно механическим опытом — измерением ускорения, создаваемого данной силой. Меру инерции тела называют массой и обозначают обычно буквой m (или М). далее 


Используются технологии uCoz